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“ All models are wrong but some are useful. ”
George Box, 1976

George Box’s statement is perhaps one of the most famous quotes ever made by a statistician,
and is something that is often forgotten. Bearing it in mind, let us look at a question that has no
doubt crossed many quants minds when modelling football scores: “are goals actually Poisson?”.
In this article, we provide our own slant on the debate and show how we try to solve the issue. . .

1 Download the data

We will be using results data from the wonderful resource that is football-data.co.uk. We have
five seasons of data from the 2010-11 season through to the 2014-15 season. The data are stored
in an R data frame called theData and we provide the code used below.

> getDataFromFootballData <- function(season = "1415") {

+ temp <- read.csv(paste0("http://www.football-data.co.uk/mmz4281/",

+ season, "/E0.csv"))

+ subset(temp,

+ select = c("Date", "HomeTeam", "AwayTeam", "FTHG", "FTAG")

+ )

+ }

> Seasons <- paste0(10:14, 11:15)

> theData <- data.frame()

> for (i in seq(along = Seasons))

+ theData <- rbind(theData, getDataFromFootballData(Seasons[i]))

For convenience, we create variables HG (home goals) and AG (away goals):

> HG <- theData$FTHG

> AG <- theData$FTAG
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2 Explore the data

First, let us start by plotting a bar chart of goals (let’s concentrate on home goals for now).

> hg_freq <- table(HG)

> plot(hg_freq, xlab = 'Number of Home Team Goals', ylab = 'Count')
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This looks as one would expect. The most common number of home team goals is 1 (occurring
in about 600 of the 1900 games), and as the number of goals increases from there, the observed
frequency decreases.

Goals scored by each team are a type of ‘count data’, and since goals can be considered to be
relatively rare events, the natural distribution to use for modelling goals is the Poisson distribution.
Indeed since as early as Moroney (1951), people have used the Poisson distribution as the basis of
models for goals in football.

The Poisson distribution arises from a process (e.g. goal scoring) that is assumed to be homo-
geneous over time and the probability that a team will score x goals by time t is given by

P(X(t) = x) =
e−λ·t(λ · t)x

x!
, (1)
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where λ is an intensity parameter which, here, is the rate at which the team scores goals (number
of goals per unit time). It is convenient to rescale time so that the end of the match is at t = 1.
With this convention P (X(1) = x) = λxe−λ/x! gives the probability that the team will score x
goals in the match, and this is the familiar textbook definition of Poisson distribution.

The first thing students often learn about the Poisson distribution is that the mean of the
distribution (the expected number of goals per match) is equal to the variance. If we are to use the
Poisson distribution for home goals, this should be true:

> c(Mean = mean(HG), Var = var(HG))

Mean Var

1.563684 1.703683

Maybe the mean is not equal to the variance here then — the variance is a little bigger than the
mean, suggesting there is a little ‘over-dispersion’ in the data.

To actually fit the Poisson distribution to the data we need to know which value of λ to use.
Fortunately, this could barely be any simpler and we just need the mean of the data as this is the
maximum likelihood estimate of λ. For home goals we saw the mean was 1.56 goals per game on
average, so λ̂ = 1.56.

To assess the goodness-of-fit, we need to compare the observed frequencies to the expected
frequencies calculated for the fitted Poisson distribution, using formula (1) and the estimated value
of λ. We add the expected frequencies to our bar plot as follows:

> hg_n <- length(HG)

> lambdaHat <- mean(HG)

> hg_count <- as.numeric(names(hg_freq))

> hg_E <- hg_n * dpois(hg_count, lambda = lambdaHat)

> hg_eo <- rbind(hg_freq, hg_E)

> row.names(hg_eo) <- c("Observed", "Expected")

> plot(hg_freq, xlab = 'Observed and Expected frequencies of Home Team Goals',
+ ylab = 'Count')
> points(hg_count, hg_E)
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The fitted Poisson appears to be under-estimating the number of matches in which the home
team scores 0 goals and over-estimating the number of matches in which the home team scores 1
goal. But on-the-whole, to the naked eye, this looks like a decent fit.

To test the goodness-of-fit more formally, we can use the chi-square goodness-of-fit test.
The chi-square test for the Poisson distribution fitted to home goals gives a test statistic of 13.23

with 5 degrees of freedom. The p-value is 0.02. Ouch, this means that despite the Poisson ‘looking’
like a decent fit, it is rejected as the distribution of home goals (at the 5% level of signicance). To
check what our ‘naked eyes’ might have missed, let us look look at the actual values depicted in
the previous plot:

> print(hg_eo, digits = 4)

0 1 2 3 4 5 6 7 8

Observed 417.0 610 483.0 248.0 90.00 31.00 14.000 4.000 3.0000

Expected 397.8 622 486.3 253.5 99.09 30.99 8.076 1.804 0.3526

We notice that the difference between the observed and expected counts for x = 0, i.e. the number
of games in which the gome team scores no goals, is 19.21, i.e. the observed frequency for x = 0 is
about 4.8% larger than the one predicted by the model. Maybe this is not so small after all. Since
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the chi-squre test pulls together the discrepancies between what we expect and what is observed
for a number of frequencies it is worth taking note of this result, even if we are not prepared to rely
entirely on formal statistical inference.

For away goals, the p-value of the test was less than 0.001 and we confidently reject the Poisson
model as the distribution of away goals, as well.

The seeds of doubt have firmly been planted. . .

3 Other models

What next? The negative binomial distribution relaxes the homogeneity assumption in the Poisson
assumption by assuming that the intensity parameter is gamma distributed. This seems sensible
as we are trying to model goals scored in matches in which each team is scoring goals at a possibly
different rate. We will use this distribution later. But what other distributions are there?

In search of peace of mind, let’s think about the process by which the Poisson distribution is
generated. As with most models, we need to make some assumptions before we can declare that
goals are a “textbook” case of a Poisson process. Here is an outline of a standard setup. Assume
that we observe the counting process over a time interval of length τ and that the events occur
completely at random, more specifically that the number of occurences in any time interval is
proportional to the length of the interval and the numbers of occurences in non-intersecting time
intervals are independent. The Poisson count probabilty is obtained by dividing the observation
interval of length τ into tiny little intervals of length δ, such that the probability of observing k
arrivals in each tiny interval is given by:

P(k, δ) ≈


1 − λδ k = 0

λδ k = 1

0 k > 1

(2)

and then summing up the contributions of all these tiny intervalls to obtain the probability P(k, τ).
The Poisson process can hence be seen as a sequence of Bernoulli trials over a large number of
(tiny) intervals of length δ with a small probability of success p = λδ. It can be thought of as the
continuous version of the binomial distribution.

This sounds like a football match — consider each possession a trial. An event occurs when a
goal is scored. The probability to score a goal in any small time interval is surely small. So far, so
good, but the seemingly abstract discussion above reveals possible problems. Indeed, the scoring
probability is hardly constant during a match. This violation alone doesn’t invalidate the Poisson
model however, it can be accommodated by allowing the rate λ to vary during matches (Smith and
Zandt, 2000). The critical assumption is that the success probability of each trial (possession) is
independent from the last. Is this true for football? It possibly isn’t. We see this all of the time
as games open up as play gets more and more stretched as teams commit more and more players
forwards after each (unsuccessful) possession.

Without modelling the possessions themselves, one can resort to trying other distributions. In
a paper by McShane et al. (2008), a discrete distribution based on a Weibull (hence relaxing the
time-constant intensity assumption) renewal process is derived. This effectively means that the
increasing rates of scoring can be accomodated by the model. This makes sense as it means that
the scoring rates (the probability of each possession being successful) can be allowed to increase

5



during the match. The resulting distribution is called the ‘Weibull count model’ and its probability
mass function is given by

P(X(t) = x) =

∞∑
j=x

(−1)x+j(λtc)jαxj
Γ(cj + 1)

, (3)

where α0
j = Γ(cj + 1)/Γ(j + 1), j = 0, 1, 2, . . . , and αx+1

j =
∑j−1

m=x α
x
mΓ(cj − cm+ 1)/Γ(j −m+ 1),

for x = 0, 1, 2, . . . , for j = x+ 1, x+ 2, x+ 3, . . . . In equation (3), λ is a ‘rate’ parameter and c is
the ‘shape’ parameter of the distribution. Here, the observation unit is the match which we take
as having a duration of 1 time unit. The rate, λ, is thus the scoring rate per match.

So far we have three candidate distributions: the Poisson, the negative binomial, and the Weibull
count models. We can generate a fourth distribution by allowing the rate parameter in the Weibull
count model to be a gamma random variable (in the same way the negative binomial distribution
was derived from the Poisson distribution). We call this distribution the ‘Weibull-gamma count’
distribution.

We have written an R package that computes the various quantities used when dealing with
these four distributions and it is available from us upon request. We now fit the Poisson, the
negative binomial and the two Weibull count models to the goals data. . .

4 Comparing the four distributions

Within the R package, the four distributions are referred to as "poissonC", "negBinC", "weibullC"
and "weiGamC" for the Poisson, the negative binomial, the Weibull count, and the Weibull-gamma
count models respectively.

To fit one of the distributions to our data, we use the code:

> parWeibullC <- fitDist(theData, home = TRUE, "weibullC")

where we set home equal to TRUE to fit the model to home goals.
The estimated coefficients can be viewed using:

> coef(parWeibullC)

lambda cc

1.5008982 0.9340265

To perform the chi-square goodness of fit tests we use the function chisqGof(). It performs
tests for all four models and returns a list with five elements: the observed frequencies, and one
element per distribution.

> gofHome <- chisqGof(theData, home = TRUE)

> gofAway <- chisqGof(theData, home = FALSE)

Tables 1 and 2 indicate that the Poisson model is inadequate for both the home and away goals.
The three other distributions are OK, at least at the conventional 5% significance level and even
the 10% significance level for the home goals.

Thinking about George Box’s quote at the start of this article then: all four of these models are
wrong, but the Poisson is the ‘most’ wrong! It is not realistic to expect particularly good models by
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Test degrees of p-value
statistic freedom

Poisson 13.23 5 0.02
Negative Binomial 5.75 4 0.22

Weibull Count 7.65 4 0.11
Weibull-Gamma Count 4.77 3 0.19

Table 1: Results of chi-square goodness-of-fit tests for four distributions fitted to home goals.

Test degrees of p-value
statistic freedom

Poisson 23.49 5 0.00
Negative Binomial 8.53 4 0.07

Weibull Count 6.60 4 0.16
Weibull-Gamma Count 6.61 3 0.09

Table 2: Results of chi-square goodness-of-fit tests for four distributions fitted to away goals.

only using an overall distribution but the clear superiority of the Weibull-count models illustrated
here and their ability to accommodate a relaxation of the homogeneity and time-constant scoring
rate assumptions suggest using them as the basis of more sophisticated models.

In our next article, we are going to describe a Maher-type model (where each team has param-
eters representing its attack and defence abilities) for football scores based on the Weibull count
model, and instead of using the chi-square test to examine the ‘goodness’ of the model, we are
going to test the model properly and use it for betting.
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